<sup id="jx83v"><rt id="jx83v"></rt></sup>
      1. <cite id="jx83v"></cite>

            <sup id="jx83v"></sup>
            久久久一本精品99久久精品77,久久香蕉超碰97国产精品,乱码中文字幕,国产麻豆精品手机在线观看,亚洲日韩国产欧美一区二区三区,亚洲欧美日韩成人高清在线一区,人妻AV无码系列一区二区三区,国产激情综合五月久久
             
            武漢大學(xué)羅玉峰研究團(tuán)隊發(fā)表智慧灌溉決策最新研究成果
            來源: | 作者: 農(nóng)業(yè)信息化 | 發(fā)布時間: 2024-05-13 | 1398 次瀏覽 | 分享到:

            論文的題目是《基于天氣預(yù)報的水稻灌溉決策強(qiáng)化學(xué)習(xí)方法》。

            A reinforcement learning approach to irrigation decision-making for rice using weather forecasts

            Mengting Chen, Yufeng Luo




            文章介紹了在智能灌溉決策方面的最新進(jìn)展。歡迎下載引用詳見:https://www.sciencedirect.com/science/article/pii/S0378377421001037

            文章發(fā)表在科學(xué)導(dǎo)報ScienceDirect 上:https://doi.org/10.1016/j.agwat.2021.106838


            文章要點

            提出并驗證了灌溉決策的一種強(qiáng)化學(xué)習(xí)方法。

            通過明智的學(xué)習(xí)方法解決利用灌溉經(jīng)驗和天氣預(yù)報的不確定性的問題。

            該方法能在不損失產(chǎn)量的前提下節(jié)約灌溉水量,縮短灌溉時間。

            所提出的灌溉強(qiáng)化學(xué)習(xí)方法對于智能灌溉實踐具有很好的應(yīng)用前景。


            論文摘要

            充分利用降雨提高農(nóng)業(yè)用水效率是農(nóng)業(yè)節(jié)水的有效途徑之一。當(dāng)前,天氣預(yù)報可以用于潛在地節(jié)約灌溉用水,但應(yīng)避免不必要灌溉的風(fēng)險和由于天氣預(yù)報的不確定性造成的,可能存在的產(chǎn)量損失。為此,提出了一種基于短期天氣預(yù)報的深度Q學(xué)習(xí)灌溉決策策略。以南昌地區(qū)水稻為例,驗證了該方法的實用性。收集了南昌附近臺站2012-2019年水稻生育期的短期天氣預(yù)報和觀測氣象資料。比較了常規(guī)灌溉和DQN灌溉兩種灌溉決策策略,并對其節(jié)水效果進(jìn)行了評價。結(jié)果表明,該模型的日降水預(yù)報性能良好,具有潛在的學(xué)習(xí)和開發(fā)空間。DQN灌溉策略訓(xùn)練后具有較強(qiáng)的泛化能力,可用于利用天氣預(yù)報進(jìn)行灌溉決策。在我們的案例中,模擬結(jié)果表明,與傳統(tǒng)灌溉決策相比,DQN灌溉產(chǎn)生必要的節(jié)水優(yōu)勢,灌溉節(jié)水23mm,排水量平均減少21mm,灌溉時間平均減少1.0倍,產(chǎn)量沒有明顯下降。DQN灌溉策略借鑒了過去的灌溉經(jīng)驗和天氣預(yù)報的不確定性,避免了天氣預(yù)報不完善的風(fēng)險。


            Highlights


            • A reinforcement learning approach for irrigation decision-making is proposed and tested.

            • Past irrigation experiences and uncertainties of weather forecasts are intelligently learned.

            • The proposed method can conserve irrigation water and reduce irrigation time without yield loss.

            • The proposed reinforcement learning approach for irrigation is promising for smart irrigation practices.


            Abstract

            Improving efficiency with the use of rainfall is one of the effective ways to conserve water in agriculture. At present, weather forecasting can be used to potentially conserve irrigation water, but the risks of unnecessary irrigation and the yield loss due to the uncertainty of weather forecasts should be avoided. Thus, a deep Q-learning (DQN) irrigation decision-making strategy based on short-term weather forecasts was proposed to determine the optimal irrigation decision. The utility of the method is demonstrated for paddy rice grown in Nanchang, China. The short-term weather forecasts and observed meteorological data of the paddy rice growth period from 2012 to 2019 were collected from stations near Nanchang. Irrigation was decided for two irrigation decision-making strategies, namely, conventional irrigation (i.e., flooded irrigation commonly used by local farmers) and DQN irrigation, and their performance in water conservation was evaluated. The results showed that the daily rainfall forecasting performance was acceptable, with potential space for learning and exploitation. The DQN irrigation strategy had strong generalization ability after training and can be used to make irrigation decisions using weather forecasts. In our case, simulation results indicated that compared with conventional irrigation decisions, DQN irrigation took advantage of water conservation from unnecessary irrigation, resulting in irrigation water savings of 23 mm and reducing drainage by 21 mm and irrigation timing by 1.0 times on average, without significant yield reduction. The DQN irrigation strategy of learning from past irrigation experiences and the uncertainties in weather forecasts avoided the risks of imperfect weather forecasting.


            文章來源:http://irripro.com.cn/


            主站蜘蛛池模板: 高清无码免费不卡视频| 国产精品无码专区第一页| 西西人体www大胆高清| 天堂女人av一区二区| 欧美日产国产精品| 欧美精品日韩精品一卡| 精品无码一区二区三区在线视频 | 欧洲精品色在线观看| 久久综合五月丁香久久激情| 武装少女在线观看高清完整版 | 欧美自拍嘿咻内射在线观看 | av一区二区中文字幕| 国产精品大白天新婚身材| 日韩人妻无码精品系列| 国产免费人成网站在线播放 | 中文无码一区二区不卡αv| 亚洲高清最新AV网站| 岛国一区二区三区高清视频| 麻豆国产va免费精品高清在线| 成人无码小视频在线观看| 天美传媒mv免费观看完整| 成人精品视频一区二区三区| 欧美亚洲国产一区二区三区| 亚洲精品久久久中文字幕痴女| 狠狠色狠狠色综合久久第一次| 国产欧美日韩在线观看精品| 国产最大成人亚洲精品| 精品日本韩国一区二区三区| 精品国产福利片在线观看| 蜜桃av一区二区高潮久久| 亚洲AV乱码一区二区三区| 亚洲国产一区二区a毛片日本| 久久亚洲粉嫩高潮的18p| 日本怡春院一区二区三区| 福利一区二区1000| 神马久久亚洲一区 二区| 国产黑色丝袜在线观看下| 开心五月激情五月综合| 国产一区二区亚洲精品| 综合网激情五月| 视频在线观看一区二区|