<sup id="jx83v"><rt id="jx83v"></rt></sup>
      1. <cite id="jx83v"></cite>

            <sup id="jx83v"></sup>
            久久久一本精品99久久精品77,久久香蕉超碰97国产精品,乱码中文字幕,国产麻豆精品手机在线观看,亚洲日韩国产欧美一区二区三区,亚洲欧美日韩成人高清在线一区,人妻AV无码系列一区二区三区,国产激情综合五月久久
             

            武漢大學(xué)羅玉峰研究團(tuán)隊(duì)發(fā)表智慧灌溉決策最新研究成果

            論文的題目是《基于天氣預(yù)報(bào)的水稻灌溉決策強(qiáng)化學(xué)習(xí)方法》。

            A reinforcement learning approach to irrigation decision-making for rice using weather forecasts

            Mengting Chen, Yufeng Luo




            文章介紹了在智能灌溉決策方面的最新進(jìn)展。歡迎下載引用詳見:https://www.sciencedirect.com/science/article/pii/S0378377421001037

            文章發(fā)表在科學(xué)導(dǎo)報(bào)ScienceDirect 上:https://doi.org/10.1016/j.agwat.2021.106838


            文章要點(diǎn)

            提出并驗(yàn)證了灌溉決策的一種強(qiáng)化學(xué)習(xí)方法。

            通過(guò)明智的學(xué)習(xí)方法解決利用灌溉經(jīng)驗(yàn)和天氣預(yù)報(bào)的不確定性的問(wèn)題。

            該方法能在不損失產(chǎn)量的前提下節(jié)約灌溉水量,縮短灌溉時(shí)間。

            所提出的灌溉強(qiáng)化學(xué)習(xí)方法對(duì)于智能灌溉實(shí)踐具有很好的應(yīng)用前景。


            論文摘要

            充分利用降雨提高農(nóng)業(yè)用水效率是農(nóng)業(yè)節(jié)水的有效途徑之一。當(dāng)前,天氣預(yù)報(bào)可以用于潛在地節(jié)約灌溉用水,但應(yīng)避免不必要灌溉的風(fēng)險(xiǎn)和由于天氣預(yù)報(bào)的不確定性造成的,可能存在的產(chǎn)量損失。為此,提出了一種基于短期天氣預(yù)報(bào)的深度Q學(xué)習(xí)灌溉決策策略。以南昌地區(qū)水稻為例,驗(yàn)證了該方法的實(shí)用性。收集了南昌附近臺(tái)站2012-2019年水稻生育期的短期天氣預(yù)報(bào)和觀測(cè)氣象資料。比較了常規(guī)灌溉和DQN灌溉兩種灌溉決策策略,并對(duì)其節(jié)水效果進(jìn)行了評(píng)價(jià)。結(jié)果表明,該模型的日降水預(yù)報(bào)性能良好,具有潛在的學(xué)習(xí)和開發(fā)空間。DQN灌溉策略訓(xùn)練后具有較強(qiáng)的泛化能力,可用于利用天氣預(yù)報(bào)進(jìn)行灌溉決策。在我們的案例中,模擬結(jié)果表明,與傳統(tǒng)灌溉決策相比,DQN灌溉產(chǎn)生必要的節(jié)水優(yōu)勢(shì),灌溉節(jié)水23mm,排水量平均減少21mm,灌溉時(shí)間平均減少1.0倍,產(chǎn)量沒(méi)有明顯下降。DQN灌溉策略借鑒了過(guò)去的灌溉經(jīng)驗(yàn)和天氣預(yù)報(bào)的不確定性,避免了天氣預(yù)報(bào)不完善的風(fēng)險(xiǎn)。


            Highlights


            • A reinforcement learning approach for irrigation decision-making is proposed and tested.

            • Past irrigation experiences and uncertainties of weather forecasts are intelligently learned.

            • The proposed method can conserve irrigation water and reduce irrigation time without yield loss.

            • The proposed reinforcement learning approach for irrigation is promising for smart irrigation practices.


            Abstract

            Improving efficiency with the use of rainfall is one of the effective ways to conserve water in agriculture. At present, weather forecasting can be used to potentially conserve irrigation water, but the risks of unnecessary irrigation and the yield loss due to the uncertainty of weather forecasts should be avoided. Thus, a deep Q-learning (DQN) irrigation decision-making strategy based on short-term weather forecasts was proposed to determine the optimal irrigation decision. The utility of the method is demonstrated for paddy rice grown in Nanchang, China. The short-term weather forecasts and observed meteorological data of the paddy rice growth period from 2012 to 2019 were collected from stations near Nanchang. Irrigation was decided for two irrigation decision-making strategies, namely, conventional irrigation (i.e., flooded irrigation commonly used by local farmers) and DQN irrigation, and their performance in water conservation was evaluated. The results showed that the daily rainfall forecasting performance was acceptable, with potential space for learning and exploitation. The DQN irrigation strategy had strong generalization ability after training and can be used to make irrigation decisions using weather forecasts. In our case, simulation results indicated that compared with conventional irrigation decisions, DQN irrigation took advantage of water conservation from unnecessary irrigation, resulting in irrigation water savings of 23 mm and reducing drainage by 21 mm and irrigation timing by 1.0 times on average, without significant yield reduction. The DQN irrigation strategy of learning from past irrigation experiences and the uncertainties in weather forecasts avoided the risks of imperfect weather forecasting.


            文章來(lái)源:http://irripro.com.cn/


            更多
            行業(yè)資訊
            產(chǎn)品分類
            主站蜘蛛池模板: 四虎永久在线精品免费一区二区| 天堂在线www官网| 久久精品无码一区二区三区不卡| 白嫩少妇喷水正在播放| 狼人亚洲国内精品自在线| 亚洲国产成人久久综合人| 国内精品伊人久久久久影院麻豆| 高清dvd碟片 生活片| 久久精品国产久精国产爱| 国产精品视频久久久久| 97久人人做人人妻人人玩精品| 亚洲综合狠狠丁香五月| 超碰色偷偷男人的天堂| 精品一区二区三区影片| 免费毛片性天堂| 日韩国产精品视频在放| 中文字幕中国女同互慰视频| 俄罗斯老熟妇乱子伦视频| 国产精品久久久久久麻豆一区| 成人免费A级毛片无码网站入口| 在线观看国产精品普通话对白精品 | 婷婷色国产精品视频一区| 伊人久久精品亚洲午夜| 香蕉成人伊视频在线观看| 国产精品_国产精品_k频道| 中文字幕日韩精品有码| 四虎在线中文字幕一区| xvideos国产在线视频| 亚洲欧美综合精品二区| 强d乱码中文字幕熟女1000部| 国产亚洲一在无在线观看| 欧美色欧美亚洲高清在线观看| 国产午夜福利视频合集| 国产AV国片精品有毛| 久久人妻无码一区二区| 2021年国产精品每日更新| 日韩精品亚洲人旧成在线| 国产精品无码av不卡| 久久精品国产亚洲AV无码不| 国内外精品成人免费视频| 少妇的肉体aa片免费|